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Measurement of large aspheric surfaces by
annular subaperture stitching interferometry
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A new method for testing aspheric surfaces by annular subaperture stitching interferometry is introduced.
It can test large-aperture and large-relative-aperture aspheric surfaces at high resolution, low cost, and
high efficiency without auxiliary null optics. The basic principle of the method is described, the synthetical
optimization stitching model and effective algorithm are established based on simultaneous least-square
fitting. A hyperboloid with an aperture of 350 mm is tested by this method. The obtained peak-to-valley
(PV) and root-mean-square (RMS) values of the surface error after stitching are 0.433λ and 0.052λ (λ
is 632.8 nm), respectively. The reconstructed surface map is coincide with the entire surface map from
null test, and the difference of PV and RMS errors between them are 0.031λ and 0.005λ, respectively.
This stitching model provides another quantitive method for testing large aspheric surfaces besides null
compensation.

OCIS codes: 220.4840, 120.3940, 120.3180, 070.4560.

Aspheric surfaces can correct aberrations, improve the
image quality, and reduce the size and weight of optical
systems. So they are extremely important in optical sys-
tems and have been applied in various fields[1,2]. Since
the curvature of asphere is variable in different regions,
the fabrication and measurement are more difficult than
spherical and flat surfaces. Especially when testing large
aperture, steep, and large departure aspheric surfaces,
many interference fringes are formed on the detection
device and make proper analysis difficult to perform,
so we will fall back on auxiliary optics such as null cor-
rector and computer-generated holograms (CGHs)[3].
The auxiliary element must have been specially designed
and customized, and it brings manufacturing errors and
some unavoidable misalignment errors. The cost of mak-
ing and verifying the null elements conspires to keep
aspheres from practical optical designs.

Annular subaperture stitching (ASS) can expand
the dynamic range of interferometer, and broaden the
measurement scope significantly. It can test large-
aperture, high-numerical-aperture aspheric surfaces at
high resolution, low cost, and high efficiency without
any null optics. There are two mathematic models
for this method at present. Liu et al. calculated the
full-aperture Zernike coefficients from the subaperture
Zernike coefficients obtained by commercial interfero-
gram reduction software[4]. Since Zernike circle polyno-
mials are not orthogonal over annular region, the fitting
results may give wrong results. Recently Hou et al.
modified the stitching algorithm with Zernike annular
polynomials instead of Zernike circle polynomials[5,6].
They calculated the Zernike annular polynomials for
each subaperture, and then fitted the Zernike polyno-
mial coefficients for the entire. The results of numerical
simulations showed that the modified algorithm has a
better performance. Another stitching model with suc-
cessive overlapping phase maps was presented by Melozzi
et al.[7]. They stitched two adjacent phase maps by elim-

inating the misalignment errors through fitting phase
data with Zernike annular polynomials over the common
zones. This process was then repeated until the whole
aperture was covered, thus the full phase distribution
could be derived.

Since the two algorithms carry on the Zernike annular
polynomials fitting, they are very complicated and the
mid- and high-frequency errors might be “smoothed out”
after stitching. The second model sews annular subaper-
tures one by one, the splicing errors will accumulate.
Although the theory and algorithm have been researched
for many years, testing large aspheric surfaces by ASS
have almost not been reported experimentally.

In this letter, we introduce a novel optimizing stitching
model for testing aspheric surfaces by ASS. The data
processing is simple and it can prevent the error from
accumulation. We have measured a large asphere by ASS
and applied it to the practical engineering.

The principle and process of ASS are very crucial.
Figure 1 shows the sketch of the experimental setup.
At first, we choose the proper transmission sphere and
decide the number of subapertures. Then we align the
interferometer and the tested asphere, make the center
of curvature of the spherical wavefront coincide with the
asphere. The slope of the spherical wavefront matches

Fig. 1. Schematic of the setup with annular subaperture
stitching.
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that of the central area, so the fringes in the central por-
tion of the interferogram are well distinguished, record-
ing the phase distribution of this region. But the fringes
in the outer portion are denser, the fringe density often
exceeds 2 pixels/wave. The fringe pattern is aliased in
that area and it exceeds the resolution of the charge-
coupled device (CCD). By varying the distance from the
asphere to the interferometer, the slope of the spheri-
cal wavefront becomes smaller and matches that of the
aspheric surface in the outer annular zone, so the null
zone moves from the central region to an outer region[7,8].
This process is then repeated to make spherical refer-
ence wavefronts with different curvature radii match the
corresponding annular subapertures and let the adjacent
subapertures have some superposition. When the en-
tire aperture is covered, the corresponding phase data of
each annular subaperture can be obtained by interferom-
etry. Then the relative translation error is subtracted
from each subaperture through the simultaneous least-
square method. Finally, after all the translation errors
have been removed, a least-square fitting with the full
data is performed to evaluate the misalignment errors of
the system.

We can stitch two annular subapertures by subtracting
the translation errors of adjacent subapertures[9]. Us-
ing the principle of two-subaperture splicing from many
times may realize multi-subaperture stitching. But it of-
ten brings the erroneous transmission and accumulation,
thus reduces the precision. In this letter, the sum of the
squared differences for all common areas should be min-
imized simultaneously[10].

Suppose there are M subapertures altogether. In order
to simplify the localization and test, generally choosing
the subaperture in the center region of the aspheric sur-
face for the reference standard, each measurement needs
to hold the following function for the correction of piston,
tilt, and power:

w0 = w1 + a1x + b1y + c1(x2 + y2) + d1

= w2 + a2x + b2y + c2(x2 + y2) + d2 = · · ·

= wM−1 + aM−1x + bM−1y + cM−1(x2 + y2) + dM−1,

(1)

where w0 is the phase distribution of the fiducial sub-
aperture, w1, w2, · · ·, wM−1 are the phase distribu-
tions of other annular subapertures, and ai, bi, ci, di

are the coefficients of the relative translation errors to
the fiducial subaperture of the tilt in the x and y direc-
tions, power, and displacement, respectively. By using
least-square fitting, we should minimize the sum of the
squared differences in the all overlapping regions as

S =
n∑

i=1

[w1 + a1x + b1y + c1(x2 + y2) + d1 − w0]2

+
M−2∑
j=1

n∑
i=1

{[wj+1 + aj+1x + bj+1y

+cj+1(x2 + y2) + dj+1]

−[wj + ajx + bjy + cj(x2 + y2) + dj ]}2 = min, (2)

where n is the number of sampling points of each com-
mon region, the total number of all overlapping regions
is M − 1. Taking the differentiations of Eq. (2) with re-
spect to these unknowns, the least squares equation can
be described as

∂S

∂aj
= 0,

∂S

∂bj
= 0,

∂S

∂cj
= 0,

∂S

∂dj
= 0, (3)

where j is an integer from 1 to M −1. The best stitching
parameters can be obtained by Eq. (3).

When all the translation errors have been eliminated,
a least-square fitting is performed to evaluate the mis-
alignment errors of the whole system:

N∑
i=1

{w(xi, yi) − [Axi + Byi + C(x2
i + y2

i ) + D]}2 = min,

(4)

where w is the phase distribution of the full aperture, N
is the number of the total sampling points, A, B, C, D
are the misalignment coefficients of the system, which
can be derived from
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After calculating these coefficients, we can obtain the
exact figure error of the asphere by removing these poly-
nomials.

We have tested an asphere (diameter D = 350 mm, ra-
dius of curvature at the vertex R0 = 4188.04 mm, conic
constant k = −2.816915) by ASS using the experimental
setup shown in Fig. 2. The results of three individual
measurements are given in Figs. 3 and 4 (the fiducial cir-
cular subaperture and two outer annular subapertures, r
is the normalized radius of the full aperture, 0 ≤ r ≤ 1).
Then the translation error was eliminated from each sub-

aperture by the simultaneous least-square method. At
last, a final least-square fitting was performed to derive
the misalignment errors of the system. The surface map
of the full aperture synthesized by the stitching method
is given in Fig. 5, where the peak-to-valley (PV) error is
0.433λ and root-mean-square (RMS) error is 0.052λ.

For comparison, the asphere was also tested by null
compensation. Figure 6 gives the surface map and inter-
ferogram from the null test, where the PV and RMS er-
rors are 0.402λ and 0.047λ, respectively. The differences
of PV and RMS errors between the two methods
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Fig. 2. Experimental setup.

Fig. 3. Interferograms of three subapertures obtained with
annular mask.

Fig. 4. Corresponding phase distributions of three subaper-
tures.

Fig. 5. Normalized surface map of the whole aperture by
stitching method. PV: 0.433λ, RMS: 0.052λ.

are 0.031λ and 0.005λ, respectively. And the surface
maps from the two methods are consistent. Although
only three subapertures are used to cover the full aper-
ture in this experiment, the same stitching procedure can
be extended to test larger and steeper aspheric surfaces
with more annular subapertures.

Fig. 6. Surface map and interferogram by null compensation.

In conclusion, we have proposed a synthetical optimiza-
tion stitching model for testing large asphere. The stitch-
ing algorithm is based on a simultaneous least-square
minimization of the mismatch among all overlapping re-
gions, and the data processing is simple and clear. It
avoids error transmission and Zernike annular polyno-
mial fitting, and the mid- and high-frequency errors are
not “smoothed out” after stitching. The measurement
results for a large-aperture asphere conclude that this
mathematical model and stitching algorithm are feasible
and effective.
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